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Abstract

A new numerical methodology for thermal performance calculation in cross-flow heat exchangers is developed.

Effectiveness–number of transfer units (e–NTU) data for several standard and complex flow arrangements are obtained

using this methodology. The results are validated through comparison with analytical solutions for one-pass cross-flow

heat exchangers with one to four rows and with approximate series solution for an unmixed–unmixed heat exchanger,

obtaining in all cases very small errors. New effectiveness data for some complex configurations are provided.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Due to wide range of design possibilities, simple man-

ufacturing, less maintenance and low cost cross-flow

heat exchangers are extensively used in industries e.g.

petroleum, petrochemical, air conditioning, food stor-

age, and others. Such heat exchangers are especially well

suited for gas cooling and heating. The extensive use of

these apparatus has generated the need for calculation

method that accurately predicts their performance [1].

A comprehensive review of solution methods for

determining effectiveness (e or P)–number of transfer
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units (NTU) relationships for two-fluid heat exchangers

with simple and complex flow arrangements is presented

by Sekulic et al. [2]. The methods were categorized by

the authors as: analytical methods for obtaining exact

solutions, approximate methods, curve-fit to the results

from the exact solutions, numerical methods, matrix for-

malism, and methods based on exchanger configuration

properties, as the use of flow reversal symmetry of ex-

changer configurations. In conformity to the authors

continuing efforts to design more efficient systems, more

compact exchangers, or specific operating conditions

may require effectiveness–NTU formulae for a new heat

exchanger, not reported in the literature. Using some of

these methods Pignotti and Shah [3] obtained 18 effec-

tiveness–NTU explicit formulas for new arrangements.

The main aim of this article is to provide a

new numerical methodology for thermal performance
ed.
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Nomenclature

A exchanger outer total heat transfer area, m2

Afr exchanger total frontal area, m2

C heat capacity rate, W/K

C* heat capacity rate ratio, Cmin/Cmax, dimen-

sionless

L total heat exchanger flow length, m

Nc number of circuits

Ne number of elements per tube

Nr number of rows in the heat exchanger

Nt number of tubes per row

NTU number of transfer units, UA/Cmin, dimen-

sionless

P temperature effectiveness, (Tc,o � Tc,i)/

(Th,i � Tc,i), dimensionless

q heat transfer rate, W

R temperature ratio, (Th,i � Th,o)/(Tc,o � Tc,i),

dimensionless

T temperature, K

U overall heat transfer coefficient, W/m2K

Greek symbols

d denotes difference

D denotes difference

e conventional heat exchanger effectiveness,

q/qmax, dimensionless

C dimensionless parameter defined by Eqs. (7)

and (12)

Subscripts

c cold fluid side of heat exchanger

h hot fluid side of heat exchanger

i inlet conditions

max maximum value

min minimum value

o outlet conditions

Superscript

e element
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calculation of cross-flow heat exchangers. The proposed

methodology is based on physical concepts and it is

characterized by the division of the heat exchanger in

a number of small and simple one-pass mixed–unmixed

cross-flow heat exchangers. The present approach allows

obtaining effectiveness data for new configurations.

At present, solutions can be getting only for configu-

rations where the external fluid is unmixed (considered

here as air flowing over finned tube bundles) and the

tube fluid is well mixed in each tube cross-section and

unmixed between passes. Then, heat exchangers with

one to several tubes can be analyzed, including different

tube fluid circuiting configurations.

Next, in Section 2, it is presented the proposed

numerical methodology for thermal performance

parameters calculation. In Section 3 simulation results
co
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Fig. 1. (a) Air and fluid temperature variations in the longitudinal

temperature variation in a differential volume element of the heat exc
are presented and compared with available solutions

from literature, considering cross-flow heat exchangers

with simple and complex flow arrangements. Finally,

the conclusions of the paper are presented in Section 4.
2. Methodology development

2.1. Governing equations for one-pass cross-flow heat

exchanger

The governing equations presented in this section

are those developed for a cross-flow heat exchangers with

one fluid mixed and another unmixed following [4].

These are the basic equations applied in the proposed

numerical solution methodology. Fig. 1 shows the
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Fig. 2. Scheme of a mixed–unmixed heat exchanger.

3882 H.A. Navarro, L. Cabezas-Gómez / International Journal of Heat and Mass Transfer 48 (2005) 3880–3888
temperature conditions for one-pass cross-flow

mixed–unmixed heat exchanger having one row. It is

considered that tube side fluid is perfectly mixed in the

tube cross-section and external fluid is perfectly unmixed,

i.e., there are fins in the airside. It is also assumed for con-

venience that the mixed fluid is hot and the unmixed is

cold. The equations are also valid when the unmixed fluid

is hot and the mixed is cold. For this condition the sub-

scripts hot and cold must be interchanged.

Fig. 1(a) illustrates the hot and cold temperature

variations along a tube of length L whereas Fig. 1(b)

shows both temperature variations along the cold fluid

flow length in the differential length (dx). In this infini-

tesimal section, the cold mass flow rate is small and

therefore the hot fluid temperature is constant. An

energy balance in the differential length, dx, for the

hot and cold fluids can be written as

dq ¼ �Ch � dT h ð1Þ
dq ¼ dCc � DT c ð2Þ

where DTc = (Tc,o � Tc,i) is the mean temperature varia-

tion of the cold fluid in the differential length, dx. Using

the fact that in the differential section dx, the cold mass

flow rate is small in comparison with the hot mass flow

rate, must be assumed that the hot capacity rate, Ch, is

constant in the section and a differential heat capacity

rate ratio must be expressed as

dC� ¼ dCc

Ch

! 0 ð3Þ

Considering Eq. (3) and the temperature conditions

(Fig. 1), a condenser type of effectiveness expression is

applicable. Then, using the effectiveness definition, a

parameter C that expresses the �local effectiveness� in
the differential length dx can be written as [4]

C ¼ DT c

ðT h � T c;iÞ
¼ 1� e�

UdA
dCc ð4Þ

Assuming that both the cold flow and heat transfer

area A distributions are uniform, the following relations

are valid

dCc

dAfr

¼ Cc

Afr

¼ const ð5Þ

dCc

dA
¼ Cc

A
ð6Þ

Thus, along the tube length L

C ¼ 1� e�
UA
Cc ¼ const ð7Þ

Combination of Eqs. (1), (2) and (4) and separation

of variables lead to

dT h

T h � T c;i

¼ �CdC� ¼ �C
Cc

Ch

dAfr

Afr

ð8Þ

In Eq. (8) it should be noted that Cc, Ch and Afr are the

total magnitudes and are not variables. As mentioned,
the developed governing equations are valid for one-

pass cross-flow heat exchanger, one fluid mixed and

another unmixed. For this kind of heat exchanger, the

integration of Eq. (8) can easily be done analytically

obtaining the e–NTU relations (see Eq. (15) latter). Nev-

ertheless, cross-flow heat exchangers for engineering

applications, commonly, have a complex flow arrange-

ment with several circuits and rows. For these exchang-

ers the solution of this system of equations (Eqs. (1)–(8))

is not trivial. In these cases the performance of deriva-

tion and integration founded in Eq. (8) is difficult due

to two reasons: due to a non-validity of Eqs. (6) and

(7) for the overall heat exchanger area, and due to a var-

iation of temperature distribution of the cold (unmixed)

fluid, Tc,i, in each row of the heat exchanger. This leads

to an application of numerical procedure to obtain a de-

sired solution.

2.2. Numerical solution methodology

The proposed methodology is based on application

of Eqs. (1)–(8) and consists in the following mean steps:

First step: The heat exchanger is divided into a set of

three dimensional control volumes called elements iden-

tified by the triplet (i, j, k). The indices 1 6 i 6 Ne;

1 6 j 6 Nt; and 1 6 k 6 Nr represent the element posi-

tion along a particular tube, the tube in each row, and

the row, respectively. It should be noted that each ele-

ment is modeled as a mixed–unmixed heat exchanger

schematized in Fig. 2.

Second step: The system of governing equations of

Section 2.1 are integrated and applied in each element

separately. This leads to a system of algebraic equations

for each element and consequently for a whole heat

exchanger.

Third step: The above system of equations for a

whole heat exchanger is solved iteratively. It is done fol-

lowing tube fluid circuits along the heat transfer surface

through indices i, j, k management.

As the mathematical model employed (see Section

2.1) is valid for a one-pass mixed–unmixed cross-flow
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heat exchanger, the size of all elements must be suffi-

ciently small to ensure this condition. This means that

should be used a large enough number of elements.

Therefore, each element work as an independently heat

exchanger connected to others by the tube fluid circuits.

Solving iteratively the integrated algebraic equations in

each of these small heat exchangers (i.e., elements) it is

obtained the temperature distribution in the whole heat

exchanger. The thermal performance parameters are

founded through application of its definitions.

2.3. Algebraic equation system for an element

The algebraic equations for each element are ob-

tained through the integration of the equations from

Section 2.1. Firstly due to the small element size and

validity of Eq. (3), it is assume that the hot fluid (mixed)

temperature has a linear variation along a control vol-

ume, whereas the cold (unmixed) has an exponential

variation. This way, the hot average element fluid tem-

perature is expressed as

T e
h ¼ 0.5 T e

h;i þ T e
h;o

� �
ð9Þ

where the superscript e is associated with a specific ele-

ment (i, j, k). Now integration of Eq. (1) in the element

leads to

qe ¼ �Ce
h T e

h;o � T e
h;i

� �
ð10Þ

In obtaining the heat balance for the cold fluid,

thought the integration of Eq. (2), and using Eq. (5),

the following expression can be written

qe ¼ DT e
c

Z
e
dCc ¼ DT e

c

Z
e

Cc

Afr

dAfr ¼ DT e
cC

e
c ð11Þ

where Cc and Afr are the total magnitudes and are not

variables and DT e
c ¼ T e

c;o � T e
c;i represents the mean cold

fluid temperature difference in the element. To close the

algebraic equation system integration of Eq. (4) in the

element results in

Ce ¼ DT e
c

T e
h � T e

c;i

� � ¼ 1� e
�ðUAÞe

Cec ð12Þ

The last term of Eq. (12) is equal to that of Eq. (7). This

is obtained because it is assumed that each element is

equal to a one-pass mixed/unmixed cross-flow heat ex-

changer. Therefore, the equations of Section 2.1 are

valid.

The relations (9)–(12) represent a closed system of

equations to be solved for each element for five un-

knowns. There are five equations for five unknowns,

namely: qe, Ce, T e
h, T e

h;o and DT e
c, knowing T e

h;i, T e
c;i,

(UA)e, Ce
c and Ce

h. To solve these equations for the whole

heat exchanger, i.e. for all the elements interconnected,

is needed an iterative procedure (see Section 2.4). The
above system of five equations must be rearranging to

obtain the following two equations for temperature cal-

culation in each element:

T e
c;o ¼

Aþ 2ð1� CeÞ
2þ A

T e
c;i þ

2Ce

2þ A
T e

h;i ð13Þ

T e
h;o ¼

2� A
2þ A

T e
h;i þ

2A
2þ A

T e
c;i ð14Þ

where A ¼ Ce
cC

e=Ce
h. Eqs. (13) and (14) are used in the

procedure described below.

During derivation of the governing equations (Sec-

tion 2.1) and its discretization (present section) the fol-

lowing hypothesis were assumed in agreement with

literature work [5]. The heat exchanger operates under

steady state conditions. The heat losses to the surround-

ings are negligible (i.e. the heat exchanger is adiabatic).

There are no thermal energy sources and sinks in the

heat exchanger walls or fluids. The tube fluid is perfectly

mixed in each cross-sectional area varying linearly

through each element; and the external fluid (unmixed)

is uniformly distributed at the inlet and outlet in each

element, being their temperatures mean values in these

regions. There are no phase changes in the fluid streams.

The physical properties and heat transfer coefficients are

constant for the heat exchanger surface. Considering

these hypotheses, it is proposed a methodology that

allows determining theoretical efficiency data. However,

these data are very useful for heat exchanger design and

rating procedures (e.g., [6]).

2.4. Procedure for thermal parameters calculation of

heat exchanger

The effectiveness is calculated by the following proce-

dure. Firstly are read the geometric data for a specific

heat exchanger from a database. Then are defined the

values of NTU, C* and Cmin = (Cc or Ch). For simula-

tion purposes the Tc,i, T h,i and UA values are arbitrarily

chosen, since e depends only on NTU, C*, and flow

arrangement. Now the parameter Ce for each element

is computed according to Eq. (12), where (UA)e is calcu-

lated using the number of elements and Ce
c and Ce

h are

computed considering the mass flow corresponding to

each element. As the developed procedure is valid only

when the element unmixed fluid heat capacity is mini-

mum, i.e. Ce
unmixed=C

e
mixed 6 1 (see Section 2.1); the num-

ber of elements, Ne, should be chosen to ensure this

condition.

The heat exchanger temperature distribution is calcu-

lated iteratively following the tube fluid circuiting using

Eqs. (13) and (14). It should be noted that it is computed

the temperature distribution for constant thermodynam-

ics properties and mean overall heat transfer coefficient.

For this reason the parameter Ce is constant for all ele-

ments. However, if it is considered the computation of

the real temperature distribution, the parameters Ce as
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well as ðUAÞe;Ce
h and Ce

c should be computed for each

element, using local properties and heat transfer coeffi-

cients. For both cases, the outlet cold and hot tempera-

tures in each element are estimated using Eqs. (13) and

(14). The convergence criteria is related to the mean cold

fluid outlet temperature (Tc,o) and is also checked by the

heat transferred rate q equality. Finally the effectiveness

e is computed by definition.
3. Results

In this section are discussed results obtained with the

developed methodology. Firstly, simulation data are

presented for one-pass cross-flow exchangers with n

rows. These results are compared with the available ana-

lytical relations showing a very good agreement. Next,

more complex heat exchanger configurations are tested

through comparison with literature proposed solutions

obtaining a very good agreement. Finally, for these con-

figurations new effectiveness data are provided. To iden-

tify the heat exchanger geometries analyzed in this paper

it is used the notation GNp ;N rp
from [6]. The two sub-

scripts represent the true number of passes (i.e. the
Table 1

e–NTU relationships for one-pass cross-flow configurations with one

Eq. (20) from [7])

Nr Side of Cmin Relation

1 A
eA ¼ 1� e� 1�e

NTUA �C�
A

� ��
C�
A

2 A eA ¼ 1� e�2K=C�
A 1þ K2

C�
A

� �
; K ¼

3 A eA ¼ 1� e�3K=C�
A 1þ K2ð3� KÞ

C�
A

þ
 

4 A
eA ¼ 1� e�4K=C�

A 1þ K2ð6� 4K þ
C�

A

 

K ¼ 1� e�NTUA �C�
A
=4

1 Both fluids unmixed e ¼ 1

C�NTU

X1
n¼0

1� e�NTU
Xn
m¼0

"(

1 Both fluids unmixed e ¼ 1� e NTU0.22 e�C�NTU0.78�1

� ��
C�

� 	

Fluid A mixed, fluid B unmixed, C�
A ¼ 1=C�

B, eB ¼ eAC�
A, NTUB ¼ N
over-and-under passes) and the number of rows per

pass, respectively.

3.1. Cross-flow heat exchanger with one pass

and n rows

In this subsection the proposed methodology is vali-

dated and analyzed through comparison of the simu-

lated results with e–NTU analytical relations for one

pass and n rows cross-flow heat exchanger. The six ana-

lytical relations considered are included in Table 1 [7–9].

For an unmixed/unmixed flow arrangement two rela-

tions were considered. One, Eq. (19), is the infinite series

solution obtained by Mason and used in [8] and [9].

Another, Eq. (20), is extensively used in literature and

is taken from [7]. An explanation of the origin of some

terms of this equation can be found in [10].

We compare the maximum relative error between

analytical (et), Eqs. (15)–(18) (Table 1), and simulated

(es) effectiveness values, G1,1, G1,2, G1,3, and G1,4, respec-

tively. This comparison is performed considering the

available analytical expressions up to four rows. A max-

imum relative error is obtained from 1111 effectiveness

values calculated in the following intervals 0 6 C�
i 6 1
or more rows (Eqs. (15)–(18) from [7,8]; Eq. (19) from [8,9];

Equation

ð15Þ

1� e�NTUA �C�
A
=2 ð16Þ

3K4

2ðC�
AÞ

2

!
; K ¼ 1� e�NTUA �C�

A
=3 ð17Þ

K2Þ þ 4K4ð2� KÞ
ðC�

AÞ
2

þ 8K6

3ðC�
AÞ

3

!
;

ð18Þ

ðNTUÞm

m!

#
1� e�C�NTU

Xn
m¼0

ðC�NTUÞm

m!

" #)
ð19Þ

ð20Þ

TUAC�
A, C

�
A ¼ CA=CB.



Table 2

Comparison between model prediction and infinite series

solution, Eq. (19)

Nr Geometry Average relative error (%)a and

maximum relative error (%)

Cmin = Cair Cmin = Ct

5 G1,5 0.63 2.88 0.45 2.89

6 G1,6 0.44 2.10 0.32 2.10

7 G1,7 0.33 1.56 0.24 1.56

8 G1,8 0.25 1.22 0.18 1.22

9 G1,9 0.20 0.97 0.14 0.97

10 G1,10 0.16 0.79 0.12 0.79

20 G1,20 0.04 0.20 0.03 0.20

50 G1,50 0.006 0.033 0.005 0.033

100 G1,100 0.0016 0.0082 0.0012 0.0082

a Average relative error = 1
N

PN
1

jes�et j
et

100.

Air

OUT OUTIN IN

a b

Fig. 3. Geometries and flow arrangement configurations for

cases taken from [6]: (a) case 4 and (b) case 7 (· and d signs

indicates that fluid flows into or out of the paper, respectively).

Air Air

a b

Fig. 4. Equivalent two dimensional geometries as proposed in

[6] and simulated by the computational program: (a) case 4 and

(b) case 7.
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and 0 6 NTUi 6 10 with 0.1 increment, respectively. Re-

sults shows that the maximum relative error is very small

for all cases, i.e., relative error of the order of 10�6%,

indicating a perfect agreement between analytical and

simulated values and the rigorousness of the present

methodology. It should be emphasized that the simula-

tion results obtained by the program are very accurate

for any number of tube rows as we can see next.

Table 2 shows the convergence history of the simula-

tion results to the infinite analytical solution, Eq. (19),

for an unmixed–unmixed arrangement. Three main

points can be emphasized from this comparison. First,

it is observed that the maximum relative error decreases

with the increase of the number of tube rows, being

equal to 0.0082% for Nr = 100. This expected behavior

shows the high accuracy of the developed methodology

and indicates that if it is desired a smaller error a num-

ber of tube rows should be increased. This leads to the

second main point of this comparison related to the un-

mixed fluid concept. From Table 2 it is seen that for a

cross-flow heat exchanger have a completely unmixed–

unmixed flow distribution it should have a higher en-

ough number of tube rows to guarantee a small relative

error in effectiveness.

The third main point is related to the fact that the

analytical solution is valid rigorously only for an infinite

number of tube rows and there are not easily available

analytical formulae for more than four rows. So, the

developed methodology permits to obtain very accurate

data for geometry configurations for what the effective-

ness values information is scarce or approximate formu-

lae are used (see Eq. (20)). To make this point clearer the

heat exchanger with one tube row is analyzed. Taking

the point C* = 0.5 and NTU = 5 it can be shown that

an error of the order of 0.1% in the effectiveness pro-

vokes an error on the NTU of the order of 4.0% using

then NTU-e analytical relation. It points to the fact that

even a small relative error on effectiveness can lead to a
great error on NTU determination. Thus, caution

should be taken when it is computed NTU from the

effectiveness–NTU relations. One application where this

is very important is the effectiveness–NTU reduction

method, commonly used for experimental determination

of the airside convective heat transfer coefficient. In

Table 2 it is seen that even for 10 tube rows the average

relative error on effectiveness is of the order of 0.1%.

When the number of rows is augmented the error

decreases as expected.

As it is difficult to derive analytical or polynomial

relations for Nr = 5 to 1, the approximate empirical

correlation (Eq. (20)) is extensively used in industry

and research laboratories. According to DiGiovanni

and Webb [10] this correlation yields to unphysical re-

sults for NTU < 1, leading to a maximum error of

3.7% when compared with the numerical solution for

an unmixed–unmixed case. Then, the proposed method-

ology supply more accurate results in these cases

and can be used when an analytical relation is not

available.



Table 3

Thermal effectiveness P values for cases 4 and 7 (Figs. 3 and 4) considering four, six and eight rows, with 10 tubes each

R NTU Thermal effectiveness P

Case 4 Case 7 Counter flow

Four rows Six rows Eight rows Four rows Six rows Eight rows

0.2 0.2 0.1782 0.1782 0.1782 0.1782 0.1782 0.1782 0.1782

0.2 0.5 0.3802 0.3805 0.3806 0.3806 0.3806 0.3807 0.3807

0.2 1.0 0.6026 0.6039 0.6044 0.6043 0.6047 0.6049 0.6050

0.2 2.0 0.8245 0.8285 0.8299 0.8293 0.8306 0.8311 0.8317

0.2 5.0 0.9762 0.9814 0.9831 0.9819 0.9839 0.9845 0.9853

0.2 10.0 0.9968 0.9988 0.9993 0.9987 0.9994 0.9996 0.9997

0.5 0.2 0.1737 0.1737 0.1738 0.1738 0.1738 0.1738 0.1738

0.5 0.5 0.3610 0.3617 0.3620 0.3619 0.3621 0.3622 0.3623

0.5 1.0 0.5593 0.5623 0.5633 0.5631 0.5640 0.5643 0.5647

0.5 2.0 0.7577 0.7669 0.7702 0.7689 0.7720 0.7732 0.7746

0.5 5.0 0.9222 0.9404 0.9474 0.9421 0.9506 0.9535 0.9572

0.5 10.0 0.9660 0.9835 0.9896 0.9817 0.9913 0.9940 0.9966

1.0 0.2 0.1664 0.1666 0.1666 0.1666 0.1666 0.1666 0.1667

1.0 0.5 0.3312 0.3324 0.3328 0.3328 0.3331 0.3332 0.3333

1.0 1.0 0.4916 0.4962 0.4978 0.4974 0.4988 0.4994 0.5000

1.0 2.0 0.6422 0.6549 0.6597 0.6578 0.6626 0.6644 0.6667

1.0 5.0 0.7729 0.7996 0.8121 0.8020 0.8183 0.8246 0.8333

1.0 10.0 0.8178 0.8532 0.8713 0.8483 0.8772 0.8898 0.9091

1.5 0.2 0.1141 0.1142 0.1142 0.1142 0.1142 0.1142 0.1142

1.5 0.5 0.2338 0.2344 0.2346 0.2346 0.2348 0.2348 0.2349

1.5 1.0 0.3572 0.3597 0.3606 0.3605 0.3612 0.3615 0.3618

1.5 2.0 0.4793 0.4866 0.4893 0.4885 0.4911 0.4920 0.4932

1.5 5.0 0.5879 0.6021 0.6085 0.6049 0.6120 0.6148 0.6186

1.5 10.0 0.6250 0.6404 0.6473 0.6402 0.6501 0.6537 0.6586

3.0 0.2 0.0587 0.0587 0.0587 0.0587 0.0587 0.0587 0.0588

3.0 0.5 0.1238 0.1240 0.1241 0.1241 0.1241 0.1241 0.1241

3.0 1.0 0.1943 0.1951 0.1953 0.1953 0.1955 0.1956 0.1957

3.0 2.0 0.2650 0.2672 0.2680 0.2678 0.2685 0.2688 0.2691

3.0 5.0 0.3198 0.3225 0.3236 0.3231 0.3243 0.3247 0.3253

3.0 10.0 0.3310 0.3322 0.3326 0.3323 0.3327 0.3329 0.3330

7.0 0.2 0.0256 0.0256 0.0256 0.0256 0.0256 0.0256 0.0256

7.0 0.5 0.0548 0.0549 0.0549 0.0549 0.0549 0.0549 0.0549

7.0 1.0 0.0873 0.0874 0.0875 0.0875 0.0875 0.0875 0.0875

7.0 2.0 0.1194 0.1199 0.1200 0.1200 0.1201 0.1202 0.1202

7.0 5.0 0.1405 0.1408 0.1410 0.1409 0.1410 0.1411 0.1412

7.0 10.0 0.1428 0.1428 0.1428 0.1428 0.1428 0.1428 0.1428
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3.2. Analysis of some cross-flow heat exchanger’s

complex configurations

A good predictive capacity of the developed method-

ology is presented in this subsection, where comparisons

between approximate solutions and simulation results

are showed for multipass counter cross-flow heat

exchangers. There are considered two cases studied by

[6]. The authors examine a very complicated heat ex-

changer flow arrangement, relating them to standard

cross-flow configurations using the Domingos� [11] rules.
These standard configurations were described by exact

or approximate solutions using the recursive algorithms

presented in [12].

More specific, they consider seven possible flow

arrangements for a cross-flow heat exchanger of 60
tubes, arranged in six rows of 10 tubes each. Values

for thermal effectiveness were obtained and a compara-

tive analysis was performed. In this subsection are con-

sidered the cases 4 and 7 by [6] to illustrate the present

methodology.

In Fig. 3 are shown schematically the geometry and

flow arrangement configuration of the above two cases

taken from [6]. For these two configurations, the authors

obtained the relations (21) (case 4) and (22) (case 7) for

thermal effectiveness of the out of tube fluid, denoted asP

P ðR;NTUÞ ¼ P c;so
3;2 ðR;NTUÞ ð21Þ

P ðR;NTUÞ ¼ P c
6;1ðR;NTUÞ ð22Þ

In these relations P c;so
3;2 and P c

6;1 represent the effectiveness

for a three true pass, with two-row per pass connected in
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the same order and for a six true pass, with one row per

pass cross-counter flow exchangers, respectively. For

calculation of these two effectiveness data, the recursive

algorithm presented in [12] was used by [6]. The values

obtained from Eqs. (21) and (22) are found in Table 1

of [6] and will be considered for comparison with the

simulation results for the effectiveness P obtained in this

work.

For this purpose two calculations are performed for

each analyzed case. Taking as an example the case 4,

the geometry shown in Fig. 3(a) is simulated. Then,

the equivalent geometry (Fig. 4(a)), proposed by [6], cor-

responding to a standard flow arrangement representing

the effectiveness P c;so
3;2 is also simulated. The same proce-

dure is done for the case 7 (Figs. 3 and 4(b)). Thus, the

proposed methodology is tested twice showing its flexi-

bility and the possibility of proving of the effectiveness

calculation methods.

Table 3 shows effectiveness P data for R equal to 0.2,

0.5, 1.0, 1.5, 3.0 and 7.0 for the geometries showed in

Fig. 3 and NTU varying from 0.2 to 10. Data for similar

geometries to those of cases 4 and 7 (see Fig. 3) but con-

sidering four and eight rows with 10 tubes each are also

presented. The results for the geometries represented in

Fig. 4 are not showed because they are exactly equal

to those of Fig. 3, in all cases. The simulated effective-

ness values for the considered geometries (Figs. 3 and

4) matched exactly those presented in [6] for R 6 1,

showing the rigorousness of the present method. For

R > 1, it was verified that results presented in [6] are less

accurate, at least for the cases 4 and 7, including the

counter flow arrangement. In this range of R values,

the data presented in Table 3 are very accurate and

new. As expected, the effectiveness increases with the

number of tube rows augmentation, tending to the coun-

ter flow configuration values, also showed in Table 3 for

comparison purpose. Similarly to [6], although the num-

ber of tabulated values in Table 3 is too high, they are

presented because could be used for interpolation and

for applications that may require a wider range of

NTU and R values. Moreover, the results shown in

Table 3 are new (for R > 1) and very accurate for all

range of R including values for four and eight rows

not shown in the paper of Shah and Pignotti [6].

From this analysis it is concluded that the developed

methodology allows the study of any configuration di-

rectly, without the necessity of application of the avail-

able literature procedures, which are very strong, but

can be difficult to apply. In the two analyzed cases,

although Shah and Pignotti present a new method of

computation of the effectiveness in analytical form, its

method needs a recursive algorithm developed by Pig-

notti and Cordero [12] to perform all the computations

for the standard configurations. This recursive algo-

rithm should be resolved in a computer as the present

procedure.
4. Conclusions

This paper presents a new methodology for cross-

flow heat exchanger thermal performance computation.

For this purpose a computational program HETE (Heat

Exchanger Thermal Efficiency) is implemented. The pro-

posed methodology is validated through comparison

with well-established analytical and approximate theo-

retical results from research works, obtaining very small

errors. New effectiveness data are obtained for some

complex flow arrangements. The following final remarks

can be stressed in relation to the proposed methodology:

• It is based on physical concepts and it is character-

ized by the division of the heat exchanger in a num-

ber of small and simple one-pass mixed–unmixed

cross-flow heat exchangers.

• It has a simpler form (Section 2), and therefore can

be easily used by other researchers in the design, rat-

ing and analysis of several cross-flow heat exchangers

configurations.

• It is very accurate and therefore suitable for predict-

ing the performance of several cross-flow heat

exchangers, including heat exchangers with new and

complex flow arrangements where analytical or

approximate solutions are not disposable.

• It permits to obtain data for cross-flow heat exchang-

ers configurations using the e–NTU, LMTD, P–

NTU and other methods, including the obtainment

of polynomial curves, graphics and correlations.

Summary, due the prediction capability, the devel-

oped methodology here described represents a useful re-

search tool for theoretical and experimental studies in

heat exchangers performance research. It therefore con-

tributes to the improvement of the energy resources use

and management.
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